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Zero-energy states of massive Dirac equation in magnetic fields
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The Dirac equation with a U(1) vortex in the mass term is solved in the presence of magneticlike fields at
zero energy. By drawing an analogy to classical mechanics, it is shown that the four-component Dirac equation
in arbitrary magnetic field always yields one zero-energy state. In the time-reversal preserving, pseudomagnetic
field, however, the number of zero-energy states may depend on the field’s profile and sign. Some explicit
examples are worked out. Possible implications of these results for the electrical charge of the vortex and for
the behavior of graphene in magnetic field are discussed.
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I. INTRODUCTION

Relativistic invariance dictates that the spectrum of
Dirac’s equation extends over both positive and negative val-
ues. Even in the condensed-matter context where the invari-
ance is only pseudorelativistic, the spectrum is often sym-
metric with respect to the change in the sign of the energy.
Particularly interesting then are the states with precisely zero
energy, right in the middle of such a spectrum. They have
been known to exist in at least two sets of circumstances:
when the Dirac electron is subjected to the magnetic field' or
when the mass term forms a kink or a vortex in the configu-
rational space.? In either case, the number of the zero-energy
states is related to some global property of the external po-
tential that acts on the electron, such as the magnetic flux or
the vorticity but is otherwise independent of the details of the
configuration. The existence of the macroscopically degener-
ate manifold of zero-energy states is believed to be respon-
sible for some of the observed quantum Hall effects in
graphene in uniform magnetic field,® for example. Vortex
zero-energy states have been intensely studied theoretically
for a number of years, within a scenario for the fractional-
ization of electric charge.* In the context of graphene, in
particular, the zero-energy states in the core of the vortex of
a superconducting order parameter have recently been ar-
gued to provide an example of the elusive Majorana
fermion,’ as well as to render the core of the vortex ordered.®

It is less clear if and what kind of zero-energy states exist
in presence of both the vortex in the mass term in the Dirac
equation and the magnetic fields. This problem arises in sev-
eral current lines of investigation. In the context of fraction-
alization, Jackiw and Pi’ have shown that the addition of a
localized flux of the pseudo, that is time-reversal symmetry
preserving, magnetic field does not change the number of
zero-energy states but only modifies their form. The problem
of the vortex in the superconducting order in graphene can
be mapped onto the same Hamiltonian.® The recent observa-
tion of the Kosterlitz-Thouless scaling of the resistivity near
the metal-insulator transition in graphene also urgently calls
for a better understanding of the vortex structure of Dirac
fermions in true, time-reversal symmetry breaking, magnetic
field.® At the present time, there are at least two candidates
for the possible order parameters in this system with the
requisite U(1) symmetry: the Néel order parameter, favored
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by the on-site repulsion between electrons, which acquires an
easy plane in the magnetic field,’ and the Kekule bond-
density-wave (BDW) order parameter, which may be favored
by the electron-phonon coupling.!®!! The internal structure
of the vortex in either of the two order parameters in vanish-
ing magnetic field has been a subject of several investiga-
tions in the recent past.!%-14

Here I consider the problem of zero-energy states of the
two-dimensional Dirac Hamiltonian with a unit vortex in the
mass term, in the presence of either pseudomagnetic or true
magnetic field. There are two principal results. For the
pseudomagnetic field, a sufficiently extended field’s configu-
ration may change the number of zero-energy states to zero
or two, depending on the field’s direction. In case of a finite
pseudomagnetic flux, on the other hand, the number of zero-
energy states remains at unity in agreement with previous
work.” For true magnetic field, the Dirac equation at zero
energy is shown to be mathematically equivalent to classical
Hamilton’s equations in a certain time-dependent potential.
This analogy is used to show that there is always precisely
one zero-energy state irrespective of the field’s profile. This
agrees with the solution of the special case of a uniform mass
and a field.!! The resulting zero-energy state is naturally
time-reversal asymmetric with the asymmetry growing with
the magnetic field. Finally, it is argued that the vortex in a
general U(1) order parameter in graphene may carry the elec-
trical charge of zero or one, depending on the type of orders
both outside and inside the vortex core. I close with the short
discussion of the recent experiment in light of these results.

II. EQUATION FOR ZERO-ENERGY STATES

We are interested in the spectrum of the general two-
dimensional Dirac Hamiltonian in presence of the vortex
configuration in the two-component mass and the vector po-
tential,

H=iyyylp;— CA(N] = A(Pivoys = Aa(Pivyys, (1)
where i=1,2, the summation over the repeated indices is
assumed, and the matrix C e€{l, yss}, with ys5=iy;ys. We
chose the vortex configuration to be rotationally symmetric
so that A, (7)=|A(r)|cos 6, Ay(F)=|A(r)|sin 6, where {r, 6}
are the polar coordinates. The y matrices, as usual, form a
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representation of the Clifford algebra, and [;, ¥;],=24;;, for
i=0,1,2,3,5.

Although the results will be representation independent,
to be specific we will use the representation directly relevant
to graphene’ in which ivyy,=—03® 0y, iv9Y,=—1,® 0,
iYy3=—0,® gy, and iy,ys=0,® . {I,,7} is the Pauli ba-
sis. The first Pauli matrix acts in the valley and the second in
the sublattice space. In this representation y,=1/, ® 03, and it
anticommutes with the Hamiltonian. In graphene, the Hamil-
tonian in this representation would act on the Dirac fermion
W=(u,,v,,u_,v )", with u. (v.) representing the wave
function on sublattice A(B) with Fourier components in the
vicinity of the Dirac point +K. When C=1, the vector po-
tential represents the true, time-reversal symmetry-breaking
magnetic field, and when C=1ss, it stands for the time-
reversal preserving pseudomagnetic field, which would rep-
resent the low-energy effect of ripples of the graphene sheet,
for example.'® Note that in the above representation 7ss
=03 ®1, so that in the latter case, the sign of the coupling of
the magnetic field to Dirac fermion is different for the two
Dirac points.

The specific mass term in the graphene representation pre-
sented above would describe the vortex configuration in the
BDW. The spectrum is nevertheless completely general, as
any Hamiltonian with the form of Eq. (1) can be transformed
into the graphene representation by a  unitary
transformation.® This follows from the fact that the four an-
ticommuting matrices appearing in the Hamiltonian form a
representation of the Clifford algebra, and all such represen-
tations are equivalent.'’

Since the zero-energy states are the eigenstates of v, it is
useful to transform to the representation in which 7y, would
become the block-diagonal matrix o3 ®1,. In the graphene
representation, this is easily accomplished by exchanging the
two sets of Pauli matrices. The Hamiltonian then becomes
purely off-diagonal: H— (o, @ H,+0_®H,)/2 with o
=0, *i0,, and the equations for the zero-energy states are

i<2az-+ @z)m(f) +A(Au_(7) =0, (2)
- i(2&z - s@f)u_(?) +APu, (7)) =0 (3)

with v,=v_=0. Here, z=x+iy, d,+id,=2dz and A=A, +iA,.
We are using the symmetric gauge in which A(7)=
x(r)(=y,%) so that the field strength is rotationally symmetric
and determined by B(r)=[d,+(1/r)]x(r). The sign s=1
refers to the real and s=—-1 to the pseudomagnetic field.

Note that the other possibility, namely, u.=0, flvvzo,
does not yield a normalizable zero-energy state. This is be-
cause assuming a finite, real, or pseudo, magnetic field at the
origin, x(r)ocr, and it can be neglected. This implies that
v(r)oc1/r near the origin, just as without the magnetic field,
and one must choose v (r) =0. For the antivortex, the role
of u and v are reversed.
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Rotating the variables and assuming rotational symmetry
of the solution, as u,(7)=\—ig(r) and u_(#)=\ip(r), we may
finally write the equations as

drq(r) == |A(1)|p(r) = x(r)g(r), (4)

d.p(r) == [A()lg(r) + sx(r)p(r), (5)

which are solved in the remainder of the paper.

III. PSEUDOMAGNETIC FIELD

Consider the simpler case of the pseudomagnetic field
with s=—1 first. By rotating in the (g,p) plane by /4, it
immediately follows that the general solution is

p() % g(r) = A e TEAC Xt lar "

Assuming that the amplitude |A(r— )| — A,, when x(r)=0
normalizability of the state dictates that the constant A_=0,
and therefore p(r)=q(r). In this case, there is a single zero-
energy state.” If x(r) #0, but |x(r— )| <A,, it is still A_
=0 and there is still a single zero-energy state. If x(r) <0,
but |x(r—)|>A,, there are no normalizable zero-energy
states at all, as both constants A =0.

When x(r) >0 and x(r— )~ r® with a>0, on the other
hand, there are evidently two orthogonal normalizable zero-
energy states. We may write them as

ult :Nte—ff)[i\A(r')|+X(f')]dr'(i 1,i), (7)

where N are the normalization constants. The norm of both
states will be finite if the strength of the field B(r) decays
slower with radius than 1/r. In particular, if the pseudomag-
netic field and the amplitude of the mass are uniform
whereas the first state is centered at the origin, the second
state is sharply peaked at r,,,,=2A,/B, which diverges as the
field approaches zero.

In sum, for a sufficiently localized pseudomagnetic field
of either sign, there is precisely one zero-energy state local-
ized at the origin.” If the field decreases slower than the
inverse radius, on the other hand, the number of zero-energy
states is zero or two, depending on the field’s direction.

IV. MAGNETIC FIELD: ANALOGY WITH
MECHANICS

For the true magnetic field (s=1), assuming |A(r)| to be
monotonically increasing, we may introduce a timelike di-
mensionless variable ¢ as dt=|A(r)|dr, and rewrite Egs. (4)
and (5) in a more suggestive form as

4(1) == f(D)q(1) - p(1), (8)

p()==q()+ f()p(1), )

where x=dx/dt and f(t)=x(¢)/|A(z)|. In this form, the Dirac
equation for the zero-energy state may be recognized as
Hamilton’s equations of classical mechanics for the “coordi-
nate” g and the “canonical momentum” p, with the time-
dependent classical Hamilton’s function,
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H@J%ﬂ=—fUMq+%w2—p% (10)

and with the corresponding Lagrangian

0)2

5 (11)

—L@qﬁ=-q+

with «(£)=1+£(1)>~f(1), and with a total time derivative
omitted. Apart from the irrelevant minus sign, this Lagrang-
ian describes the motion of a classical particle in the inverted
harmonic potential,

g) 7. (12)

V(q’t) ==
In absence of the magnetic field x(z) =1 and the potential
V(g,t) is static; for any initial ¢(0) providing the right
amount of initial kinetic energy will get the particle to the
origin in infinite time. Since the initial energy is simply
E(t=0)=[p*(0)—¢*(0)]/2, this is ensured by the initial con-
dition p(0)=¢(0). The conservation of energy implies then
that p(r)=q(r) at all times. This mechanical interpretation of
the familiar solution becomes useful in understanding the
qualitative effect of the magnetic field. Although for a finite
magnetic field, the potential V(g,¢) typically becomes steeper
with time, it is clear that there are two independent solutions
of the equation of motion: first when the initial kinetic en-
ergy is too small so that particle starting from some g(0)
>0 returns and ultimately runs off to positive infinity, and
the second, when for a too large initial kinetic energy, the
particle goes over the top and runs off to the negative infin-
ity. Continuity guarantees then the existence of the initial
condition in between these two extremes for which the par-
ticle will reach the top with precisely zero velocity, i.e., in
infinite time. This trajectory corresponds to the normalizable
zero-energy state of the Dirac Hamiltonian. Using the equa-
tion of motion, the rate of the change in the “mechanical
energy” of the system is found to be

E=-

%qz(t). (13)

To reach the top with zero velocity, the sum of the initial
energy and the work done externally needs to vanish. This
may be expressed as a global condition on the solution,

p%m+2fxﬂﬂﬁﬂﬁﬁm=0. (14)
0

V. EXAMPLE: UNIFORM MAGNETIC FIELD

For illustration, let us consider the case of the uniform
magnetic field y(r)=Br/2, and the vortex with the core of
size R: |A(r)|=Ayr/R, for r<R, and |A(r)|=A,, for r=R.
The equation of motion is

=[1+%(0) - f(0]g. (15)

For r<R, f(t)=BR/2A, and constant, and t=Ayr?*/2R. The
general solution is therefore
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2 2 2 2
q(r)=cie"" + ¢, (16)

where c¢; and ¢, are constants and L is the characteristic
length, determined by

L_(BY @)2
L4_<2> +<R . (17)

When r>R, on the other hand, f=6f, where &
=B/[2(Ay)?] is a dimensionless parameter. It would then
seem that one needs to distinguish two cases: (a) When &

<1,

where U stands for the hypergeometric function. In this case,
the potential V(q,7) is always repulsive and consequently the
solution is monotonically decreasing.

(b) When 6> 1, the solution is

3l +1-63 |B|r?
418 27 2

g-() = cgmor)e‘B"z/zU{

14253 |B
| V]. (19)

= c2(Anp)e B 2/2U
q=(r) = c5(Agr)e 45 2 2

Although the potential V(g,f) now starts as attractive, the
solution is nevertheless still always monotonically decreas-
ing and without oscillations. It is in fact qualitatively the
same as in the previous case.

The continuity implies that ¢g-(R)=¢~(R) and
dq-(R)/dr=dq~(R)/dr, which yields two linear equations
on the three constants c¢;, i=1,2,3. The normalization then
provides the third condition that completes the solution, as
usual. It is also easy to see that the solution is always with
¢,>c; and therefore monotonically decreasing, as one in-
deed would expect from the mechanical analogy.

VI. REMARKS ON THE SOLUTION

The reversal of the sign of the true magnetic field simply
exchanges the solutions for p and ¢, as evident from Egs. (8)
and (9). This is of course equivalent to the time reversal,
consisting of the exchange of the two Dirac points followed
by the complex conjugation.'’

The solution for the antivortex may be obtained most sim-
ply by multiplying the zero-energy state by the matrix s, for
example. Since ys anticommutes with the last term in Eq. (1)

while commuting with the rest, the Hamiltonian 'ySI:I s has
only the sign of A,(7) flipped, and thus represents an anti-
vortex. In the graphene representation ys=0,® 0,, and the
result of the multiplication correctly reproduces the time re-
versal followed by the exchange of the sublattices.

It is interesting to consider the two limits of the above
zero-energy solution, for weak and strong magnetic field. In
the former case, the zero-energy state approaches the stan-
dard zero-field solution of Jackiw and Rossi which respects
the time-reversal symmetry. In the latter case, when B
> A,/R, the solution for ¢(r) is localized very close to the
center of the core, and thus it has the form of the second term
in Eq. (16). Equation (4) then fixes the second component to
be p(r) ~ (BR/Ay)q(r)>q(r). In the limit of strong magnetic
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field, the zero-energy solution is, in the graphene representa-
tion,

Wi = M0,0,e"*,0) + O(Ay/BR) (20)

and has a single large component. Note how the result does
not approach continuously the solution at A=0 since even
for an infinitesimal A, vorticity eliminates the v components
of the state completely. When the magnetic field is much
larger than the mass, the zero-energy state is strongly local-
ized, finite only over one sublattice, and has Fourier compo-
nents essentially only near one of the Dirac points.

Since the Hamiltonian in Eq. (1) always anticommutes
with y,, even a rotationally asymmetric mass vortex and/or
the magnetic field still produce a spectrum symmetric around
zero. This means that continuous deformations of the rota-
tionally invariant problem considered here would still yield
exactly one zero-energy state because moving that single
state to a finite energy would obviously violate the spec-
trum’s symmetry.

VII. ELECTRICAL CHARGE OF THE VORTEX

The existence of the zero-energy solutions in the magnetic
field being established, let us turn to some of their possible
manifestations. Let us assume first that the ordered state of
the electrons in the magnetic field at half filling, i.e., at the
filling factor zero, preferred by the electron-electron interac-
tions is indeed the BDW,'%!! identical for both projections of
the spin, for example. This being an order parameter with an
(approximate) U(1) symmetry, a vortex will be topologically
distinct and thus stable. The mean-field Hamiltonian in pres-
ence of such a vortex will then consist of two (spin) copies of
the Eq. (1) in the true magnetic field, which will have two
zero-energy states. The zero-energy Hilbert space then pro-
vides a representation of the algebra of the possible order
parameters in the core.® In the case at hand, this algebra
consists of the arbitrary oriented Néel and the charge-
density-wave (CDW) order parameters, given by {7 ® y,,1,
® Yo}, respectively, since these four matrices exhaust the set

of operators that anticommute with the Hamiltonian 12®IEI .
The electrical charge of the vortex vanishes if the Néel order
parameter is preferred locally since that implies that pre-
cisely one state from the zero-energy space is occupied and
the other orthogonal state is empty. If, in contrast, the CDW
state is preferred energetically, both states will be occupied
(for vortex) or empty (for antivortex) and the vortex will
bind a unit charge.!? Obviously there is a cost in the electro-
static energy in the latter case but one can conceive of, pos-
sibly unrealistic, Hamiltonians, with the nearest-neighbor
sufficiently strong, for example,'> where such a state could
be energetically favorable. At finite temperatures, fluctuating
vortices and antivortices would in that case indeed behave
like a plasma of positive and negative charges with the me-
tallic conductivity proportional to the vortex density. Assum-
ing that density vanishing at the point of metal-insulator tran-
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sition in the standard Kosterlitz-Thouless fashion would then
rationalize the experimental observation.® This scenario,
however, obviously depends on the favorable ordering of the
interaction energy scales in the many-electron Hamiltonian
so that electron-phonon coupling is larger than nearest-
neighbor repulsion, which in turn is larger than the on-site
repulsion, for example. Recent work!® which finds the stable
BDW over a large portion of the zero-field phase diagram,
however, could make this mechanism more plausible.

The second option mentioned in Sec. I for the order pa-
rameter with the (exact) U(1) symmetry is the familiar Néel
order, which for small enough Zeeman energy develops an
easy plane.” Vortex in this order would be described by the
mass term in the Eq. (1) replaced by (A0 +A,05) ® . This
being equivalent to Eq. (1), the Hamiltonian for the Néel
vortex also contains two zero-energy states in its spectrum.'?
This time however, the algebra of competing orders in the
vortex core is different, and is readily seen to consist of the
third component of the Néel, two BDWs, and the third
component of the Haldane-Kane-Melle (HKM) order
parameter,” {03® 9,1, ®iYyY3,[,®ivYs5,03Qiy,7,}, te-
spectively. In this case, the vortex will be charged only if it is
the HKM ordering that is energetically preferred in the core,
and otherwise not. In particular, one would assume that the
order in the core, if possible, should be of the same type as
the order supporting the vortex, which was preferred ener-
getically in the first place. On this basis, it is the third com-
ponent of the Néel order that may be expected to develop in
the core'? with the consequence of rendering the vortex elec-
trically neutral.

VIII. CONCLUSION

In this paper, it has been established that the two-
dimensional Dirac equation with a vortex in the two-
component mass term has a single zero-energy solution even
in presence of an arbitrary, including infinite, flux of the
(true) magnetic field. When the particle in question has spin-
1/2, the number of zero modes is doubled. In the context of
graphene, this should imply that depending on the residual
terms in the Hamiltonian such as electron-electron interac-
tions, nonlinearities of the electron dispersion, edges, etc.,
the electrical charge of the vortex excitation in some U(1)
order parameter in magnetic field may be zero or one, corre-
sponding to the occupancy of both or just one of the two
zero-energy modes. Two candidate order parameters and
possible connections to the experiment on metal-insulator
transition in graphene were discussed.
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